Contribution from the William Ramsay and Ralph Forster Laboratories, University College, Gower St., London, W.C.1, United Kingdom and the Istituto di Chimica Generale ed Inorganica, the University, Padova, Italy

The Infrared Spectra (450-70 cm<sup>-1</sup>) of Square Planar Pyridine an Substituted Pyridine Complexes of Gold(III)

L. Cattalini,\* R. J. H. Clark,\*\* A. Orio,\* and C. K. Poon\*\*

Received December 18, 1967

A series of gold(III) complexes of the type  $AuX_3$ , L, where L = pyridine,  $pyridine d_5$ , 2-, 3- or 4-methyl pyridine, 2,6-, 3,5- or 2,4-lutidine, or 4-cyanopyridine and X = Cl or Br, have been prepared, the bromocomplexes for the first time, and their infrared spectra have been recorded in the range 450-70  $cm^{-1}$  as nujol mulls. The metal-halogen stretching vibrations in the complexes are assigned, and compared with the corresponding vibrations in the parent  $AuX_4^-$  ions. The metal-base stretching vibrations are also assigned where possible, and an attempt is made to correlate these with the strenghts of the bases.

## Introduction

In a recent publication,<sup>1</sup> the influence of basicity and steric hindrance on the reactivity of amines towards the tetrachloroaurate(III) ion has been reported. A linear free energy relationship is observed between the second order rate constants and the basicity of the entering groups. Moreover, the steric hindrance associated with the presence of one or two methyl groups in the  $\alpha$ -

Table I. Analytical Data on the New Complexes

pyridine, pyridine-d<sub>5</sub>, 2-, 3- or 4-methyl pyridine, 2,6-, 3,5- or 2,4-lutidine, or 4-cyanopyridine and X = CIor Br, the infrared spectra of the complexes have now been recorded in the metal-ligand stretching and bending frequency regions (450-70 cm<sup>-1</sup>). Metal-ligand stretching frequencies are well known<sup>2</sup> to be functions of the oxidation state and coordination number of the metal, but other factors, such as the basicity of the ligand, may also be important.

## **Experimental Section**

The chloro-complexes were prepared as described previously.<sup>3</sup> One of these is new, AuCl<sub>3</sub>. (4–CN–py), but was prepared by the standard procedure. The bromo-complexes are reported for the first time, and were prepared by adding the amine to an aqueous solution of HAuCl<sub>4</sub>, neutralised with NaHCO<sub>3</sub> and containing 7-8 equivalents of bromide (NaBr or KBr). The gold is initially present in solution almost entirely as the AuBr<sub>4</sub><sup>-</sup> ion. The analytical data on the new complexes are given in Table 1.

| Complex                       | Au     |       | С      |       | н      |       | N      |       |
|-------------------------------|--------|-------|--------|-------|--------|-------|--------|-------|
|                               | Calcd. | Found | Calcd. | Found | Calcd. | Found | Calcd. | Found |
| AuBr <sub>3</sub> . (py)      | 38.2   | 37.9  | 11.6   | 11.3  | 0.95   | 0.95  | 2.7    | 2.7   |
| AuBr <sub>3</sub> . (2–Me–py) | 37.2   | 37.0  | 13.6   | 13.6  | 1.35   | 1.2,  | 2.65   | 2.6   |
| AuBr. (3-Me-py)               | 37.2   | 37.0  | 13.6   | 13.5  | 1.3    | 1.3   | 2.6,   | 2.7   |
| AuBr. (4-Me-py)               | 37.2   | 36.8  | 13.6   | 13.6  | 1.3    | 1.3   | 2.65   | 2.65  |
| AuBr. (2.6-lut)               | 36.2   | 35.8  | 15.5   | 15.4  | 1.65   | 1.6   | 2.6    | 2.6   |
| AuBr. (3,5-lut)               | 36.2   | 36.1  | 15.5   | 15.5  | 1.65   | 1.6   | 2.6    | 2.5,  |
| AuBr <sub>1</sub> . (2,4-lut) | 36.2   | 35.0  | 15.5   | 15.4  | 1.6    | 1.7   | 2.6    | 2.6   |
| AuBr <sub>1</sub> . (4-CN-py) | 37.4   | 36.8  | 13.7   | 13.5  | 0.7    | 0.7   | 5.3    | 5.1   |
| AuCl <sub>3</sub> . (4–CN–py) | 48.3   | 48.3  | 17.7   | 17.6  | 1.0    | 1.1   | 7.15   | 7.0,  |

position decreases the reactivity, the effects of the methyl groups being additive.

In an attempt to obtain more information about the complexes so formed, namely  $AuX_3 \cdot L$ , where L =

The infrared spectra were recorded as nujol mulls on Grubb-Parsons DM2 and GM3 instruments over the ranges 450-200 and 200-70 cm<sup>-1</sup> respectively. The spectra were calibrated against that of water vapour. The spectrum of AuBr<sub>3</sub>(3-Me-py) was also recorded at

(2) R. J. H. Clark, Spectrochim. Acta, 21, 955 (1965); "Internat. Rev. Halogen Chem.", Academic Press, vol. 3, pp. 85-121 (1967).
(3) L. Cattalini and M. L. Tobe, Inorg. Chem., 5, 1145 (1966).

<sup>(\*)</sup> Istituto di Chimica Generale ed Inorganica, Università di Padova,

Padova, Italy. (\*\*) William Ramsay and Ralph Forster Laboratories, University College, Gower St., London, W.C.I, England. (1) L. Cattalini, M. Nicolini and A. Orio, *Inorg. Chem.*, 5, 1674 (1966).

Table II. Vibrational Frequencies of the AuX, Ions<sup>4.5</sup>

| Ion              | $v_1(a_{1g})$      | $v_2(b_{1g})$      | V3(82u)      | $v_{4}(b_{2g})$    | V6(eu)                | $v_7(e_u)$            | f <sub>Aux</sub>       |
|------------------|--------------------|--------------------|--------------|--------------------|-----------------------|-----------------------|------------------------|
| AuCl₄⁻<br>AuBr₄⁻ | R(ν)<br>347<br>212 | R(v)<br>324<br>196 | IR(π)<br>143 | R(δ)<br>171<br>102 | IR,R(v)<br>356<br>252 | IR,R(δ)<br>173<br>100 | (md/Å)<br>2.10<br>1.76 |

R = Raman active; IR = Infrared active: v = stretching mode;  $\pi =$  out-of-plane bending mode;  $\delta =$  in-plane bending mode;  $v_3(b_{2u})$  is inactive (note that the assignments for  $v_3$  and  $v_4$  are reversed over those given in Refs. 4, 5, owing to the different orientation of the x- and y-axes).

liquid nitrogen temperatures. The effect of this is to sharpen slightly the whole spectrum, and to raise the frequency of each band by 1 cm<sup>-1</sup>. The spectra are believed to be accurate to  $\pm 1$  cm<sup>-1</sup> for sharp bands and  $\pm 2$  cm<sup>-1</sup> for broad bands.

## **Results and Discussion**

The most logical framework on which to base the interpretation of the spectra of the complexes is the spectra of the AuX<sub>4</sub><sup>-</sup> ions . These are summarised in Table II, together with their assignments and activities in the D<sub>4h</sub> point group. The three modes which are eihter completely (a<sub>1g</sub> and b<sub>1g</sub>) or essentially (e<sub>u</sub>) stretching in character lie in the ranges 324-356 cm<sup>-1</sup> for X=Cl and 196-252 cm<sup>-1</sup> for X=Br. The out-of-plane bending mode of the AuCl<sub>4</sub><sup>-</sup> ion (a<sub>2u</sub>) occurs at 143 cm<sup>-1</sup>, and the in-plane bending modes (b<sub>2g</sub> and e<sub>u</sub>) lie in the ranges 171-173 cm<sup>-1</sup> for X=Cl and 100-102 cm<sup>-1</sup> for X=Br.

The vibrational representation of the complexes AuX<sub>3</sub>. L in C<sub>2v</sub> symmetry (the highest possible) is  $4a_1 + 3b_1 + 2b_2$ , all modes being infrared-active. Four of these  $(3a_1 + b_1)$  are essentially stretching modes, three being Au–Cl in character  $(2a_1 + b_1)$  and one Au–L  $(a_1)$ . The  $b_1$  Au–X stretch correlates with the very intense,  $e_u$  mode of the AuX<sub>4</sub><sup>-</sup> ion, and is thus likely to be the strongest band in the spectrum of each of the complexes. The  $a_1$  Au–X stretch arising from the symmetric stretching of the *trans* X atoms has a negligible dipole moment change, and is thus likely to lead only to very weak, probably unobserved absorption. The  $a_1$  Au–Cl stretch

of the chlorine *trans* to the base is likely to have medium intensity. The out-of-plane  $(\pi)$  an in-plane  $(\delta)$  bending modes belong ot the representations  $2b_2$  and  $a_1+2b_1$  respectively.

The results are given in Table 111. In the spectra of most of the complexes there are weak-medium bands in the 400-450 cm<sup>-1</sup> region which are assigned to ring vibrations of the base.

Gold-Halogen Stretching Vibrations. The most obvious features of the spectra are the very strong bands at 356-366 cm<sup>-1</sup> for the chlorides and 253-267 cm<sup>-1</sup> for the bromides. In the light of the discussion above, these bands are assigned unambiguously to the asymmetric (b<sub>1</sub>) Au-X stretching vibration of the trans halogen atoms. The assignments is further substantiated by near-identity of the frequency ranges to the frequencies of the  $e_{\mu}$  vibrations of the parent AuX<sub>4</sub><sup>-</sup> ions (which have a similar form), and by the narrowness of the frequency ranges (consistent with the atomic motions being at right angles to the Au-base bond in each case). The b<sub>1</sub> Au-X stretching vibration thus behaves as a remarkably good group frequency. Within each range, the 4-cyanopyridine complex gives rise to the highest frequency.

The a<sub>1</sub> Au-X stretching vibration arising from the motion of the halogen atom *trans* to the base proved to be more difficult to identify. This is partly because of its weakness, and partly because it may lie in the region of the metal-base stretching frequency (particularly in the case of the bromides). Despite the tentative nature of the assignments of this mode in Table III, it is clear that its frequency varies quite widely, as expected for a mode which must be strongly coupled with the colinear Au-L stretching vibration.

Table III. Infrared-active Vibrational Frequencies in Complexes of the Type AuX<sub>3</sub>. L (450-70 cm<sup>-1</sup>)

| Complex                       | Ligand Modes  | v(AuX)          | v(Aul_) "            |        |           | Lower Fr | requency Bands |           |               |        |       |             |
|-------------------------------|---------------|-----------------|----------------------|--------|-----------|----------|----------------|-----------|---------------|--------|-------|-------------|
| AuCl <sub>1</sub> . (py)      | 444 m         |                 | 249 wm, 239 wm       |        |           |          | 165 ms         |           | 129 vs        |        |       |             |
| AuBr <sub>3</sub> . (py)      | 443 wm        | 260 vs, 225 m   |                      |        | 191 s     |          |                |           |               | 111 w  |       | 91 s        |
| AuCl <sub>3</sub> . (2-Me-py) |               | 362 vs, 345 sh  | 249 w                |        |           | 172 m    | 160 ms         |           | 123 s         |        |       |             |
| AuBrs . (2-Me-py)             | 432 wm, 402 m |                 | 255 ms               |        |           | 186 w    | 156 s          |           |               | 110 m  | 105 m | 88 m        |
| AuCl, (3-Me-py)               |               | 360 vs, 337 m   | 234 m, asym          |        |           | 190 m    | 169 ms         |           | 121 s. br     |        |       | 84 m        |
| AuBr, (3-Mc-py)               | 413 m         | 256 vs. 215 m?  | •                    | 215 m  | 194 s     | 178 s    |                |           |               |        | 91 s  | 87 s        |
| AuCl, . (4-Me-py)             |               | 356 vs          | 286 m                | 212 m  | 197 w?    | 183 w    | 169 ms         | 145 ms    | 122 s. br     | 104 w  |       |             |
| AuBr. (4-Me-py)               |               | 254 vs, 202 m?  | 286 vw?              |        | 202 m     |          |                |           |               |        |       | 81 ms       |
| AuCl. (2,6-lut)               | 408 w, 344 sh | 362 vs. 338 sh? | 278 w                |        |           |          | 170 m, br      | 144 ms    | 1 <b>28 s</b> |        |       | • • • • • • |
| AuBr, . (2,6-lut)             | 344 wm        | 253 vs. 224 w?  | 300 m, 282 m         | 203 wm |           |          |                |           | ~ 131 s. br   | 108 m  | 99 m  | 91 m        |
| AuCl. (3.5-lut)               | 427 w         | 363 vs. 337 w   | 289 vw?              | 208 wm |           | 187 m    | 173 wm, 168 m  |           | 127 vs        |        |       | 90 m        |
| AuBr. (3.5-lut)               | 425 w         | 256 vs. 253 sh  | 290 wm               | 208 w? | 190 ms    | 175 ms   |                |           |               | 104 m  |       | 86 s        |
| AuCl. (2,4-lut)               | 444 wm        | 364 vs. 339 mw  | 306 w                |        | 199 m, br |          | 159 ms         | 152 m, sh | 120 s         |        |       |             |
| AuBr. (2.4-lut)               | 439 wm        | 254 vs          | 299 w                | 201 w? | 190 w     |          |                | 138 m     |               | 108 m  |       | 85 m        |
| AuCl, (4-CN-py)               |               | 366 vs. 339 mw  | 249 m, 227 wm        | 202 wm |           |          | 175 m          | 148 s     | 131 s. br     | 121 5  |       | ~94 wm, br  |
| AuBr. (4CNpy)                 | •             | 267 s           | 249 vs. 233 wm       |        |           | 182 wm   | 167 w?         | 143 s     |               | 115 ms |       | 91 m        |
| AuCl, (py-d.)                 | 421 m, 407 m  | 359 vs          | 271 m, 263 sh, 227wm |        | 195 wm    |          | 166 m          | 140 s     | 124 s         |        |       | 84 m        |
| AuBr, (py-d.)                 | 404 wm        | 258 vs. 213 m   | <b>b</b>             |        | 182 s     |          |                |           |               | 109 w  |       | 90 s        |

<sup>a</sup> Suggested assignments. <sup>b</sup> Obscured by v(AuX). py = pyridihe, lut = lutidine, py-d<sub>s</sub> = C<sub>s</sub>D<sub>s</sub>N, vs = very strong, s = strong, m = medium, w = weak, sh = shoulder, br = broad.

(4) H. Stammreich and R. Forneris, Spectrochim. Acta, 16, 363 (1960).

(5) A. Sabatini, L. Sacconi and V. Schettino, Inorg. Chem., 3, 1775 (1964).

Cattalini, Clark, Orio, Poon | Infrared Spectra of Substituted Pyridine Complexes of Au<sup>111</sup>

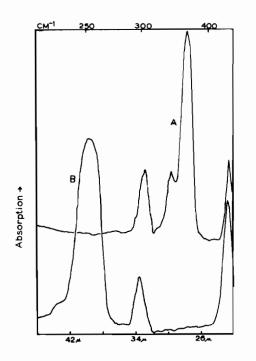



Figure 1. Infrared spectra of (A),  $AuCl_3$ . (2,4-lut) and (B),  $AuBr_3$ . (2,4-lut) in the range 455-220 cm<sup>-1</sup>.

Gold-Base Stretching Frequency. In several cases, considerable difficulty was experienced in attempting to

assign the Au–L stretching frequency, again because of coupling of this vibration with the colinear Au–X stretching vibration. A typical spectrum of a chloride and bromide of the same base is shown in Figure 1. The Au–L stretching frequency is assigned tentatively to the range 234-306 cm<sup>-1</sup>. While the Au–L stretching frequencies appear in general to increase with increase in the base strengths of the ligands (which have pKa's in the order 4–CN–py < py < 3–Me–py < 4–Me–py < 2–Me–py < 3,5–lut < 2,6–lut < 2,4–lut), the irregularities obviously indicate that other factors, such as the mass of the ligands and their degree of steric hindrance, are also important. The relationship is therefore not simple.

Bands below 200  $cm^{-1}$ . The compounds gave good spectra down to 70 cm<sup>-1</sup> but in the main the bands were not amenable to simple interpretation. All the chlorides had two common features, a medium-strong band at  $160-170 \text{ cm}^{-1}$  and a strong band at  $120-131 \text{ cm}^{-1}$ . The former is probably the in-plane and the latter the outof-plane Cl-Au-Cl bending frequency, by analogy with the corresponding vibrational frequencies of the AuCl4ion ( $e_u$  and  $a_{2u}$  respectively). The bromides all contain bands of variable intensity in the range 175-202 cm<sup>-1</sup> (possibly Au-Br stretching modes); they also contain a weak to medium band in the range 104-115 cm<sup>-1</sup> (exceptions being the 3-Me- and 4-Me-pyridine complexes), and a medium-strong band in the range 81-91  $cm^{-1}$ . These are probably the in-plane and out-of-plane Br-Au-Br bending frequencies.